
Hashes

As we learned breifly at the end of class today, a hash function is a map from a set of information of varying sizes (for

example, a string of arbitrary length) to a set of information of same length (for example, 32-bit integers). To be clear, this

definition requires that the function be deterministic, meaning that if I put something in multiple times, I'll get the same

answer out every time. Note that this doesn't disallow, and in fact cannot disallow, collisions: finding two inputs which

hash to the same value. However, one desirable effect is that a hash function have good avalanching, meaning that the

changes in input and changes in output are uncorrelated: if I change hello to helln , then their hashes should probably

be very different.

Come up with a hash from binary numbers of any length to 32-bit integers that ensures that no two (distinct) numbers with

the same length (i.e. number of bits) form a collision. Give an informal justification as to why you think you're right.

DAGs
Let us say that the graphical form of a DAG is the visual picture of the graph. Let us say that the file form of a DAG is as

follows. Given a graph whose graphical form is:

It's file form is:

 {a:[b, d, e], b:[c, d], c: [e], d: [f], e: [f], f: []}

What is a sure-fire way to write down something that looks like the file form of a DAG and ensure that it in fact is the file

form of some DAG? Test out your hypothesis by creating two examples, and one non-example (example of the hypotheses

not being held results in a non-DAG).

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Avalanche_effect

